Fructosediphosphates
Health dictionary
Untitled Document
Search :      

Art dictionary
Financial dictionary
Hollywood dictionary
Insurance dictionary
Literature dictionary
Real Estate dictionary
Tourism dictionary

 
  Fructosediphosphates



Fructosediphosphates

   Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.

RELATED TERMS
--------------------------------------

Fructose
Fruit sugar.

Glycolysis
The pathway by which GLUCOSE is catabolized into two molecules of PYRUVIC ACID with the generation of ATP.



SIMILAR TERMS
--------------------------------------

Fructans
Polysaccharides composed of D-fructose units.

Fructokinases
A class of enzymes that catalyzes the phosphorylation of fructose in the presence of ATP. EC 2.7.1.-.

Fructosamine
A term referring to the linking of blood sugar onto protein molecules in the bloodstream. The fructosamine value depends upon the average blood sugar level during the past three weeks. The fructosamine test could be viewed as complementary to the glycohemoglobin, as the two tests are different reflections of diabetes control: glycohemoglobin looks back approximately eight to twelve weeks, and the fructosamine test looks back about three weeks. |Note: the term fructosamine has nothing to do with the term fructose.

Fructose
Fruit sugar.

Fructose 1 Phosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose 1,6 Biphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose 1,6 Bisphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose 1,6 Bisphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose 1,6 Bisphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose 1,6 Diphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose 1,6 Diphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose 1,6-Bisphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose 1,6-Bisphosphate Aldolase, Class II
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose 1-Phosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose 2,6-bisphosphatase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose Biphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose Biphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose Bisphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose Bisphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructose Intolerance
An autosomal recessive fructose metabolism disorder due to deficient fructose-1-phosphate aldolase (EC 2.1.2.13) activity, resulting in accumulation of fructose-1-phosphate. The accumulated fructose-1-phosphate inhibits glycogenolysis and gluconeogenesis, causing severe hypoglycemia following ingestion of fructose. Prolonged fructose ingestion in infants leads ultimately to hepatic failure and death. Patients develop a strong distaste for sweet food, and avoid a chronic course of the disease by remaining on a fructose- and sucrose-free diet.

Fructose Intolerances
An autosomal recessive fructose metabolism disorder due to deficient fructose-1-phosphate aldolase (EC 2.1.2.13) activity, resulting in accumulation of fructose-1-phosphate. The accumulated fructose-1-phosphate inhibits glycogenolysis and gluconeogenesis, causing severe hypoglycemia following ingestion of fructose. Prolonged fructose ingestion in infants leads ultimately to hepatic failure and death. Patients develop a strong distaste for sweet food, and avoid a chronic course of the disease by remaining on a fructose- and sucrose-free diet.

Fructose Metabolism, Inborn Errors
Inherited abnormalities of fructose metabolism, which include three known autosomal recessive types: hepatic fructokinase deficiency (essential fructosuria), hereditary fructose intolerance, and hereditary fructose-1,6-diphosphatase deficiency. Essential fructosuria is a benign asymptomatic metabolic disorder caused by deficiency in fructokinase, leading to decreased conversion of fructose to fructose-1-phosphate and alimentary hyperfructosemia, but with no clinical dysfunction; may produce a false-positive diabetes test.

Fructose-1,6-Biphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose-1,6-Bisphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose-1,6-Bisphosphatase Deficiencies
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-1,6-Bisphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-1,6-Diphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose-1,6-Diphosphatase Deficiencies
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-1,6-Diphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-2,6-bisphosphatase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-2,6-bisphosphate 2-phosphatase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-2,6-diphosphatase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-6-P 1-Kinase
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are muscle type M (PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE); liver type L (PHOSPHOFRUCTOKINASE-1, LIVER TYPE); and type C (PHOSPHOFRUCTOKINASE-1, C TYPE) found in platelets, brain, and other tissues.

Fructose-6-P,2-kinase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-6-phosphate 1-Phosphotransferase
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are muscle type M (PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE); liver type L (PHOSPHOFRUCTOKINASE-1, LIVER TYPE); and type C (PHOSPHOFRUCTOKINASE-1, C TYPE) found in platelets, brain, and other tissues.

Fructose-6-phosphate,2-kinase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-6-phosphate,2-kinase-fructose-2,6-bisphosphatase
An allosteric enzyme that regulates glycolysis and gluconeogenesis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-2,6-bisphosphate, an allosteric effector for the other 6-phosphofructokinase, PHOSPHOFRUCTOKINASE-1. Phosphofructokinase-2 is bifunctional: the dephosphorylated form is a kinase and the phosphorylated form is a phosphatase that breaks down fructose-2,6-bisphosphate to yield fructose-6-phosphate.

Fructose-Biphosphatase Deficiencies
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-Biphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructose-Bisphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructose-Bisphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructosediphosphatase
An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11.

Fructosediphosphatase Deficiencies
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructosediphosphatase Deficiency
An autosomal recessive fructose metabolism disorder due to absent or deficient fructose-1,6-diphosphatase activity. Gluconeogenesis is impaired, resulting in accumulation of gluconeogenic precursors (e.g., amino acids, lactate, ketones) and manifested as hypoglycemia, ketosis, and lactic acidosis. Episodes in the newborn infant are often lethal. Later episodes are often brought on by fasting and febrile infections. As patients age through early childhood, tolerance to fasting improves and development becomes normal.

Fructosediphosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructosemonophosphate Aldolase
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.

Fructuronate Reductase
An enzyme that catalyzes the reversible oxidation of mannonate to fructuronate in the presence of NAD. Also reduces D-tagaturonate to D-altronate. EC 1.1.1.57.



PREVIOUS AND NEXT TERMS
--------------------------------------

Fructose Intolerances
An autosomal recessive fructose metabolism disorder due to deficient fructose-1-phosphate aldolase (EC 2.1.2.13) activity, resulting in accumulation of fructose-1-phosphate. The accumulated fructose-1-phosphate inhibits glycogenolysis and gluconeogenesis, causing severe hypoglycemia following ingestion of fructose. Prolonged fructose ingestion in infants leads ultimately to hepatic failure and death. Patients develop a strong distaste for sweet food, and avoid a chronic course of the disease by remaining on a fructose- and sucrose-free diet.

Fructose-6-P 1-Kinase
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are muscle type M (PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE); liver type L (PHOSPHOFRUCTOKINASE-1, LIVER TYPE); and type C (PHOSPHOFRUCTOKINASE-1, C TYPE) found in platelets, brain, and other tissues.

Fruits, Citrus
A plant genus of the family RUTACEAE. Species in this genus include orange, grapefruit, lemon, and lime.

Fruits
The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds.

Frugiperdas, Spodoptera
A genus of owlet moths of the family Noctuidae. These insects are used in molecular biology studies during all stages of their life cycle.

Fructosediphosphates

FSH-Releasing Protein
Activins are produced in the pituitary, gonads, and other tissues. By acting locally, they stimulate pituitary FSH secretion and have diverse effects on cell differentiation and embryonic development. Activins are glycoproteins that are hetero- or homodimers of INHIBIN-BETA SUBUNITS.

Frustrations
The motivational and/or affective state resulting from being blocked, thwarted, disappointed or defeated.

Fucosidase
An enzyme that catalyzes the hydrolysis of an alpha L-fucoside to yield an alcohol and L-fucose. Deficiency of this enzyme can cause FUCOSIDOSIS. EC 3.2.1.51.

Fucithalmic
An antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed) It acts by inhibiting translocation during protein synthesis.

Fu, Gong
Activities in which participants learn self-defense mainly through the use of hand-to-hand combat. Judo involves throwing an opponent to the ground while karate (which includes kung fu and tae kwon do) involves kicking and punching an opponent.

   We thank you for using the Health Dictionary to search for Fructosediphosphates. If you have a better definition for Fructosediphosphates than the one presented here, please let us know by making use of the suggest a term option. This definition of Fructosediphosphates may be disputed by other professionals. Our attempt is to provide easy definitions on Fructosediphosphates and any other medical topic for the public at large.
 
This dictionary contains 59020 terms.      









  
                    © Health Dictionary 2005 - All rights reserved -

   ructosediphosphates / fuctosediphosphates / frctosediphosphates / frutosediphosphates / frucosediphosphates / fructsediphosphates / fructoediphosphates / fructosdiphosphates / fructoseiphosphates / fructosedphosphates / fructosedihosphates / fructosediposphates / fructosediphsphates / fructosediphophates / fructosediphoshates / fructosediphospates / fructosediphosphtes / fructosediphosphaes / fructosediphosphats / fructosediphosphate / ffructosediphosphates / frructosediphosphates / fruuctosediphosphates / frucctosediphosphates / fructtosediphosphates / fructoosediphosphates / fructossediphosphates / fructoseediphosphates / fructoseddiphosphates / fructosediiphosphates / fructosedipphosphates / fructosediphhosphates / fructosediphoosphates / fructosediphossphates / fructosediphospphates / fructosediphosphhates / fructosediphosphaates / fructosediphosphattes / fructosediphosphatees / fructosediphosphatess / rructosediphosphates / tructosediphosphates / gructosediphosphates / bructosediphosphates / vructosediphosphates / cructosediphosphates / dructosediphosphates / eructosediphosphates / f4uctosediphosphates / f5uctosediphosphates / ftuctosediphosphates / fguctosediphosphates / ffuctosediphosphates / fductosediphosphates / feuctosediphosphates / f3uctosediphosphates / fr7ctosediphosphates / fr8ctosediphosphates / frictosediphosphates / frkctosediphosphates / frjctosediphosphates / frhctosediphosphates / fryctosediphosphates / fr6ctosediphosphates / fruxtosediphosphates / frustosediphosphates / frudtosediphosphates / fruftosediphosphates / fruvtosediphosphates / fru tosediphosphates / fruc5osediphosphates / fruc6osediphosphates / frucyosediphosphates / fruchosediphosphates / frucgosediphosphates / frucfosediphosphates / frucrosediphosphates / fruc4osediphosphates / fruct9sediphosphates / fruct0sediphosphates / fructpsediphosphates / fructlsediphosphates / fructksediphosphates / fructisediphosphates / fruct8sediphosphates / fructowediphosphates / fructoeediphosphates / fructodediphosphates / fructoxediphosphates / fructozediphosphates / fructoaediphosphates / fructoqediphosphates / fructos3diphosphates / fructos4diphosphates / fructosrdiphosphates / fructosfdiphosphates / fructosddiphosphates / fructossdiphosphates / fructoswdiphosphates / fructoseeiphosphates / fructoseriphosphates / fructosefiphosphates / fructoseviphosphates / fructoseciphosphates / fructosexiphosphates / fructosesiphosphates / fructosewiphosphates / fructosedphosphates / fructosedi0hosphates / fructosedi-hosphates / fructosedi[hosphates / fructosedi;hosphates / fructosedilhosphates / fructosediohosphates / fructosedi9hosphates / fructosedipyosphates / fructosedipuosphates / fructosedipjosphates / fructosedipnosphates / fructosedipbosphates / fructosedipgosphates / fructosediptosphates / fructosediph9sphates / fructosediph0sphates / fructosediphpsphates / fructosediphlsphates / fructosediphksphates / fructosediphisphates / fructosediph8sphates / fructosediphowphates / fructosediphoephates / fructosediphodphates / fructosediphoxphates / fructosediphozphates / fructosediphoaphates / fructosediphoqphates / fructosediphos0hates / fructosediphos-hates / fructosediphos[hates / fructosediphos;hates / fructosediphoslhates / fructosediphosohates / fructosediphos9hates / fructosediphospyates / fructosediphospuates / fructosediphospjates / fructosediphospnates / fructosediphospbates / fructosediphospgates / fructosediphosptates / fructosediphosphqtes / fructosediphosphwtes / fructosediphosphstes / fructosediphosphxtes / fructosediphosphztes / fructosediphospha5es / fructosediphospha6es / fructosediphosphayes / fructosediphosphahes / fructosediphosphages / fructosediphosphafes / fructosediphosphares / fructosediphospha4es / fructosediphosphat3s / fructosediphosphat4s / fructosediphosphatrs / fructosediphosphatfs / fructosediphosphatds / fructosediphosphatss / fructosediphosphatws / fructosediphosphatew / fructosediphosphatee / fructosediphosphated / fructosediphosphatex / fructosediphosphatez / fructosediphosphatea / fructosediphosphateq /